
US. Department of Energy

Laboratory

Preprint
UCRL-JC-148522

Parallel, Distributed
Scripting with Python

P. Miller

This article was submitted to
Srd Linux Clusters Institute International Conference on Linux
Clusters: The HPC Revolution, St. Petersburg, Florida, October 23-
25,2002

May 24,2002

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at htb: / /www.doe.Pov/bridge

Available for a processing fee to U.S. Department of Energy
and its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reportsaado nis .os ti. POV

Available for the sale to the public from
U.S. Department of Commerce

National Technical Mormation Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: grders&tis.fedworld.gov
Online ordering: httD: / /www.ntis.zov/orderinp.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http:/ /www.llnl.gov/ tid/Library.html

http://grders&tis.fedworld.gov
http://www.llnl.gov

Parallel, Distributed Scripting with Python*

Patrick Miller
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory
p atmiller @llnl . gov

May 24, 2002

Title:
Track: Applications & Tools

Parallel, Distributed Scripting with Python

Presenter: Patrick Miller
Email: patmiller@llnl.gov
Phone: 925-423-0309

Abstract

Parallel computers used to be, for the most part, one-of-a-kind systems which were extremely difficult
to program portably. With S M P architectures, the advent of the POSIX thread API and OpenMP gave
developers ways to portably exploit on-the-box shared memory parallelism. Since these architectures didn’t
scale cost-effectively, distributed memory clusters were developed. The associated MPI message passing
libraries gave these systems a portable paradigm too. Having programmers effectively use this paradigm is
a somewhat different question. Distributed data has to be explicitly transported via the messaging system
in order for it to be useful.

In high level languages, the MPI library gives access to data distribution routines in C, C++, and
FORTRAN. But we need more than that. Many reasonable and common tasks are best done in (or as
extensions to) scripting languages. Consider sysadm tools such as password crackers, file purgers, etc ...
These are simple to write in a scripting language such as Python (an open source, portable, and freely
available interpreter). But these tasks beg to be done in parallel. Consider the a password checker that
checks an encrypted password against a 25,000 word dictionary. This can take around 10 seconds in Python
(6 seconds in C). It is trivial to parallelize if you can distribute the information and co-ordinate the work.

*DISCLAIMER This document was prepared as an account of work sponsored by an agency of the United States Govern-
ment. Neither the United States Government nor the University of California nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any informa-
tion, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference
herein to any s p d c commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Univer-
sity of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United
States Government or the University of California, and shall not be used for advertising or product endorsement purposes. This
work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore
National Laboratory under Contract No. W-7405-Eng-48.

2

mailto:patmiller@llnl.gov

This paper will present pyMPI, a distributed implementation of Python extended with an MPI interface.
The tool makes it easy to write parallel Python scripts for system administration, data exploration, file
post-processing, and even for writing full blown scientific simulations. Parallel Python also allows developers
to prototype the data distribution for parallel algorithms in a easy, interactive, and intuitive manner without
having to compile code, build specialized MPI types, and build serialization mechanisms. pyMPI supports
most of the MPI API. It allows access to sends, receives, barriers, asynchronous messaging, communicators,
requests, and status. In short, it provides a fully functional parallel environment coupled with a powerful
scripting engine. The combination simplifies the generation of large scale, distributed tools for clusters.

Scripting languages are often used as glue -to mix and match previously unrelated tools and modules to
solve a problem. Parallel scripting languages can combine serial components to build parallel applications.
In some cases, the parallelization is trivial and one simply needs a simple framework in which to execute -
pyMPI provides that. For example, one could write a parallel Python script to undertake a parameter study
of a serial application or component. It is a distributed loop, but it is easy to write in parallel Python:

import mpi

f o r x in mpi . scatter (parameters) :
...

os. system(sample-application -parameter=\%s ’ %x)
...

It is important that the parallel scripting framework have a complete and robust implementation of MPI.
This is particularly true when tasks need to be co-ordinated. Consider preprocessing graphics files and
combining into a master file. A simple shell script can only co-ordinate through the file system, but pyMPI
can simply throw a barrier:

import mpi

for file in mpi . scatter (f iles) :

mpi.barrier()
if mpi.rank = 0:

...

os. system(’postprocess %s ’%f ile)

os. system(’ buildmast er %s ’ %string. j oin (f iles))
...

One can also co-ordinate a parallel application written as a Python extension. In one application, we
have written a sophisticated, parallel, multi-level time-step control in pure Python (enhanced with MPI).
Similarly, one can use the capabilities of a parallel enhanced Python to bring distributed data back together
so that serial tools can work on the combined data:

3

import mpi

All processors do this.. .
rho = simulation. computeDensity()

...

globalPosition = mpi .gather (x)
globalFtho = mpi .gather (rho)
if mpi-rank == 0:
for position,density in map(None,globalPosition,globalRho) :
print position,density

...

Extra nodes can be utilized to perform clean-up, post-processing, and archid tasks that need to be
tightly co-ordinated with a parallel task. In the example below, dump files are moved off to the archive after
every step. Since the move is prompted by a MPI message from the application, the files will never be picked
up in an intermediate state (e.g. the file exists, but has not been finalized).

import mpi
Build a sub communicator for the "real" work
comm = mpi.dup(world[:-l])
if comm:

worker = something(comm) # Use the sub-communicator
for i in range(steps) :

worker. do-work()
comm.barrier() # Wait just on workers
mpi. send("archive" ,mpi. size-1, taro) # on world comm

mpi. send("done" ,mpi. size-1, tag=l) # on world comm
else :

A single cleanup process
while 1:

msg, status = mpi.recv()
if msg == "archive":

elif msg == "done":
<copy files to archive>

break

4

In a similar manner, one can construct simulations of large grain components. Consider a physically
divided computation such as a turbo-machinery simulation. The application follows air flows through com-
pressor turbines through a combustor and then through exhaust vanes. Consider the major components of
the application: a turbine simulator, a combustor simulator, and an interface control. Parallel Python can
be used to set up the communicators for each, handle details of data manipulation, control outputs, handling
load balancing, etc.. -

pyMPI couples the distributed parallelism of MPI with the scripting power of Python. MPI unleashes
the power of large clusters, while Python brings access to hundreds of easy to use, freely available modules.
Together, they can simplify both sysadm and scientific simulation tasks on high-end clustered machines.

5

